Technology Foundations

Conan C. Albrecht, Ph.D

R126

Overview

Background Principles

- Why do we sample?
- What is the end goal of sampling?

Risks of Sampling

- Why do we sample?
 - Efficiency: we can't review all records
- What's the end goal of sampling?
 - To extrapolate to a population
- Computers don't need to sample
- Fraud detection is *not* about extrapolation to the entire population
 - We're only interested in the 2-3 bad records!
- Rather than sample, create scripts to do your analyses on the entire population
 - Some sampling can be done to check the script, but not to check the data

- Most corporate data is stored in large databases
 - Oracle, DB2, MS-SQL Server, MySQL
- But that's what geeks are for !?!
 - A basic knowledge empowers you to guide and direct IT personnel
 - Can you imagine doing fraud examination without basic (or even advanced) accounting knowledge?
 - Future CFEs will need to know more and more "geek stuff"

Spreadsheets vs. Databases

- Design a spreadsheet to store:
 - Salesperson, type of sale, sales amount
 - Now add:
 - Region
 - Returns
 - Customer

Spreadsheets and Databases Represent Data Differently

	,					
0	A	В	C	D	E	
1		Notebook	Desktop	Accessories	Support	
2	Carl	\$203,000	\$140,000	\$50,000	\$20,000	
3	Debbie	\$505,000	\$602,000	\$40,315	\$30,252	
4	Lindsey	\$306,212	\$311,233	\$31,525	\$21,223	
5	Daniel	\$71,732	\$61,232	\$62,313	\$15,251	
6	Ryan	\$8,200	\$13,222	\$52,555	\$62,313	
_						

SalesPerson	Area	Amount		
Carl	Notebook	\$203,000		
Carl	Desktop	\$140,000		
Carl	Accessories	\$50,000		
Carl	Support	\$20,000		
Debbie	Notebook	\$505,000		
Dehhie	Deskton	\$602.000		

Cross-Tabulation

- A *crosstab* is a conversion from database format to spreadsheet format
- It is necessary for spreadsheet analyses of data
- Applications that perform crosstabs:
 - Access, Excel, ACL, IDEA, Picalo

Table: chargessmall Rows: Vendor Cols: Purchaser Data: sum(Amount)

Spreadsheets

- About 1.4M+ rows
- Cells are often calculations of other cells
- Columns are predefined (A, B, C, ...)
- Limited searching ability
- Many blank cells (null values)
- Spreadsheets are wonderful for complex mathematical data storage
 - Loan amortization
 - Stock ratio analysis

- Virtually unlimited numbers of rows
- Custom-defined columns
- Limited calculations on cell values
- Empty cells (null values) are rare
- Extensive searching capabilities
- Databases are wonderful for data storage
 - Employee records
 - Transaction records

Types of Databases

- Relational
 - Most databases you'll encounter are thankfully relational
 - Stores data in two-dimensional tables
 - Tables are related to one another
- SAP, PeopleSoft
- Other
 - Hierarchical
 - Object
 - Hash
 - Lotus Notes

Relational Databases

- Made up of tables (called *relations*)
- Each table has a *primary key*
- Have only as many columns as are defined
- Relatively unlimited number of rows
- Each row usually represents some real world 'thing', such as a timecard entry, employee, or purchase
- Cell values are atomic
- Columns have data types

HomeMart Database in MS Access

 Data Warehousing is a fancy term for databases specifically designed for analysis

Data Warehousing

- Fraud Detection Data Warehouses
 - Temporary (usually)
 - Data is reloaded each time
 - Designed to highlight transactions, employees, and companies that have symptoms of specific frauds

Databases Used In Warehousing

- MS Excel
 - Easy to use for small data sets
 - Record limits
- MS Access
 - Easy to use
 - Record limits
- Production Databases
 - SQL Server, PostgreSQL, MySQL
 - Harder to use, handles significantly more data
- Corporate Databases
 - Oracle, DB2
 - Normally too heavy for fraud warehouses
- My Recommendation
 - Production Database with MS Access/IDEA/ACL/Picalo front end

PgAdmin III

- Option 1: Query yourself with a direct link
- Option 2: Have someone else (IT dept) query and send you the results
- Which is better?
- Which is possible?

Option 1: Get It Yourself

Advantages of Getting it Yourself

- Corporate servers are made to handle the amount of transactions companies have
- Laptops/desktops do not usually have the processing power, memory, or disk space to massage and analyze large amounts of data
- Most corporate servers have unused cycles (at night or on weekends) you can harness to do your analyses for you

- Since there are thousands of relational databases, Microsoft developed the ODBC standard
- Provides a standard way of connecting to DB
- ODBC is your friend. Learn to use it!

The ODBC Approach

- MS Access is a great ODBC front-end
- ACL and IDEA
- Picalo

MS Access - link tables to "conan" database

Option 2: Get Data From The IT Dept.

Drawbacks of Using IT

- IT personnel are not trained in fraud detection principles
- IT personnel usually take too long
- IT personnel usually send data via CD or Zip disk, which limits the amount of data that can be sent
- Queries must be run 10 to 15 times to get them property honed to individual data set "personalities"
 - This processs is infinitely more efficient if done directly
- If you want it done right, do it yourself. :)
 - Significant data processing and prepration occurs during and after query runs. It is important that CFE's are involved in every step of this process

Data Formats

- Data are stored in the computer as 1's and 0's
 - A data format is the way these 1's and 0's are organized (for example, how fields are delimited)
- Proprietary formats
 - .doc (Word) .xls (Excel) .mdb (Access)
- Open formats
 - .csv (Comma Separated Values)
 - .tsv (Tab Separated Values)
 - .xml (eXtensible Markup Language)
- Most corporate servers will only export data in open formats such as fixed width, delimited text (CSV & TSV), or XML
- Excel and Access can import fixed and delimited text easily

5 6 Mar P!

			<u>.</u>		_			
1057096715took57	и Â	3	3	3	1	и Э	ы С	U C
1057096715took56	И	И	0	6	и	И	И	И
1057096715baggins58	0	3	3	3	1	0	0	0
1057096716took58	0	3	3	3	1	0	0	0
1057096717root	0	0	0	0	0	0	0	0
1057096718brandybuck	0	3	3	3	1	0	0	0
1057096718root	0	0	0	0	0	0	0	0
1057096720took59	0	3	3	3	1	0	0	0
1057096721brandybuck	0	6	6	6	2	0	0	0
1057096721baggins57	0	3	3	3	1	0	0	0
1057096721baggins59	0	3	3	3	1	0	0	0
1057096721root	0	0	0	0	0	0	0	0
1057096721smeagol	3	3	3	3	1	0	0	0 🦱
1057096721 took60	0	0	0	0	0	0	0	0 🛄
1057096722brandybuck	0	3	З	3	1	0	0	0
1057096727root	0	0	0	0	0	0	0	0
1057096727baggins56	0	3	З	3	1	0	0	0
1057096730brandybuck	0	0	0	0	0	0	0	0
1057096730took57	0	3	3	3	1	0	0	0
1057096730took56	0	0	0	0	0	0	0	0
1057096730baggins58	0	3	3	3	1	0	0	0
1057096731 took58	0	3	3	3	1	0	0	0
1057096732root	0	0	0	0	0	0	0	0
1057096733brandybuck	0	3	3	3	1	0	0	0
1057096734root	Ō	Ō	ē	Ō	Ø	Ō	Ō	Ø
1057096735took59	Ō	3	3	3	1	Ō	Ō	Ō
· · · · · · · ·	=	=	=	=	<u>-</u>	=	=	-

CSV (and TSV)

1057096712, baggins56, 0, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096715, brandybuck57, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0 1057096715, took57, 0, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096715.took56.0.0.0.0.0.0.0.0.0.3.3.0.0 1057096715, baggins58, 0, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096716, took58, 0, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096717, root, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0 1057096718, brandybuck59, 0, 3, 3, 3, 1, 0, 0, 0, 4, 4, 0, 0 1057096720, took59,0,3,3,3,1,0,0,0,3,3,0,0 1057096721, brandybuck58, 0, 6, 6, 6, 2, 0, 0, 0, 4, 4, 0, 0 1057096721, baggins57, 0, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096721,baggins59,0,3,3,3,1,0,0,0,3,3,0,0 1057096721, root, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0 1057096721, smeaqol, 3, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096721, took60,0,0,0,0,0,0,0,0,0,3,3,0,0 1057096722, brandybuck56, 0, 3, 3, 3, 1, 0, 0, 0, 4, 4, 0, 0 1057096727, root, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0 1057096727,baggins56,0,3,3,3,1,0,0,0,3,3,0,0 1057096730, brandybuck57, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0 1057096730, took57, 0, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096730, took56,0,0,0,0,0,0,0,0,0,3,3,0,0 1057096730, baggins58, 0, 3, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0 1057096731, took58,0,3,3,3,1,0,0,0,3,3,0,0 1057096732,root,0,0,0,0,0,0,0,0,3,3,0,0 1057096733, brandybuck59, 0, 3, 3, 3, 1, 0, 0, 0, 4, 4, 0, 0 1057096734.root,0,0,0,0,0,0,0,0,0,0,0,0

- XML is a powerful markup language

 More exact than TSV/CSV, but not supported by most products yet
- XML's strength is in cross-platform data transfer
 - It is wonderful for import and export

```
<data>
<employee id="123456">
<FirstName>Louis</FirstName>
<LastName>Sampsonite</LastName>
<Salary>24000</Salary>
...
</employee>
</data>
```

Data Transfer

- Best options
 - ODBC -- transfer is part of the connection
 - Internet -- transfers virtually unlimited amounts of data
 - Compress files before transfer using Zip or GZip
 - File Transfer Protocol (FTP), Secure Copy (SCP/SFTP)
- Next best options -- physical transfer
 - DVDs (4800 MB)
 - CDs (800 MB)
 - Zip disks (100 or 250 MB)
- Poor options
 - Email -- Must convert to text, most mail servers will stop anyway

Transferring Files Over the Internet

- File Transfer Protocol
 - Very old, reliable transfer mechanism
 - Many Windows clients exist
 - Internet Explorer with ftp:// prefix in url
- Secure FTP
 - Newer, encrypted version of FTP
 - Compresses automatically
 - WinSCP 3: Windows client
- Skype
 - Encrypted IM peer to peer
 - Send files to coworkers securely

Importing Data

- Software that will link to data
 - MS Access
 - Picalo
- Software that will import data
 - MS Access
 - Picalo
 - MS Excel
 - ACL
 - IDEA

Table: chargessmall Access, IDEA, ACL, Picalo

First Steps To Perform (now that you have your data)

Verify Data Types

- Computers must type data columns to know what operations can be performed
- String
 - VARCHAR, CHAR, etc.
 - Most data can be typed as a string
- Number
 - Integer (int, long): no decimal point
 - Take less memory than decimal numbers
 - Decimal (float, double, money): decimal point
- Date
 - Databases, cultures, time zones, countries have a wide variance in formatting

Expression converting in Picalo, chargessmall.tsv

Type Conversion

- Data normally need type conversion after import
- Data scales must be consistent
- Fixed and delimited text files have no typing information
 "1" + "1" = "11"
- Dates
 - "Standard" SQL date isn't very standard
 - Unix standard: milliseconds since epoch

Massage Data For Consistency

- Massaging data is ensuring the data is consistent and ready for analysis
 - Computers must have consistent data
 - Real world data is noisy and inconsistent
- Examples
 - Convert all dollar amounts to the same base unit (millions, thousands, etc.)
 - Removing extraneous data
 - Filling in blank values
 - Calculation of new columns
- Real-world Example
 - Invoice dollars with zero amounts would cause errors when found in the denominator

Your data is now ready

for core analysis

Common Pitfalls

- Improperly imported data field formats (numbers imported as text)
- Running calculations on fields that have incompatible types
- Calculating ranges/dates on fields with incompatible types
- Comparing numbers that have different scales (date ranges are notorious)
- Trusting an analysis routine just because it doesn't throw errors

Adapted from Tammi Johnson, 2004 Annual Fraud Conference

Common Pitfalls

- Not using control totals
- Trying to accomplish too much in a single analysis
- Not creating (and checking) analyses step by step
- Dealing with large data sets
- Not creating "tick" columns to mirror date fields

Common Pitfalls

- Sharing database results with other people (who may take them too far)
- Using technology that is not up to the analysis being done
- Using technology that is far beyond the analysis being done
- Not spot checking analysis output with expected output
- Not understanding the schema of the database you are accessing